Desflurane selectively suppresses long-latency cortical neuronal response to flash in the rat.
نویسندگان
چکیده
BACKGROUND The effect of inhalational anesthetics on sensory-evoked unit activity in the cerebral cortex has been controversial. Desflurane has desirable properties for in vivo neurophysiologic studies, but its effect on cortical neuronal activity and neuronal responsiveness is not known. The authors studied the effect of desflurane on resting and visual evoked unit activity in rat visual cortex in vivo. METHODS Desflurane was administered to adult albino rats at steady-state concentrations at 2%, 4%, 6%, and 8%. Flashes from a light emitting diode were delivered to the left eye at 5-s intervals. Extracellular unit activity within the right visual cortex was recorded using a 49-electrode array. Individual units were identified using principal components analysis. RESULTS At 2% desflurane, 578 active units were found. Of these, 75% increased their firing rate in response to flash. Most responses contained early (0-100 ms) and late (150-1000 ms) components. With increasing desflurane concentration, the number of units active at baseline decreased (-13%), the number of early-responding units increased (+31%), and number of late-responding units decreased (-15%). Simultaneously, baseline firing rate decreased (-77%), the early response was unchanged, and the late response decreased (-60%). CONCLUSIONS The results indicate that visual cortex neurons remain responsive to flash stimulation under desflurane anesthesia, but the long-latency component of their response is attenuated in a concentration-dependent manner. Suppression of the long-latency response may be related to a loss of corticocortical feedback and loss of consciousness.
منابع مشابه
Effect of phasic electrical locus coeruleus stimulation on inhibitory and excitatory receptive fields of layer V barrel cortex neurons in male rat
Introduction: It is believed that Locus Coeruleus (LC) influences the sensory information processing. However, its role in cortical surround inhibitory mechanism is not understood. In this experiment, using controlled mechanical displacement of whiskers we investigated the effect of phasic electrical stimulation of LC on response of layer V barrel cortical neurons in anesthetized rat. Methods: ...
متن کاملClosing the doors of perception.
ANESTHESIOLOGY is a discipline that is uniquely placed to contribute to the preeminent scientific quest of this century–namely the understanding of the neurologic mechanisms that underpin the phenomena of consciousness. The operating room is the crucible in which any putative theory should be tested. While acknowledging that there are arguments as to whether rapid eye movement sleep is really a...
متن کاملCritical Changes in Cortical Neuronal Interactions in Anesthetized and Awake Rats.
BACKGROUND Neuronal interactions are fundamental for information processing, cognition, and consciousness. Anesthetics reduce spontaneous cortical activity; however, neuronal reactivity to sensory stimuli is often preserved or augmented. How sensory stimulus-related neuronal interactions change under anesthesia has not been elucidated. In this study, the authors investigated the visual stimulus...
متن کاملPrimed-burst potentiation in adult rat visual cortex in vitro
The effectiveness of θ pattern primed-bursts (PBs) on development of primed-burst (PB) potentiation was investigated in layer II/III of the adult rat visual cortex in vitro. Experiments were carried out in the visual cortical slices. Population excitatory post-synaptic potentials (pEPSPs) were evoked in layer II/III by stimulation of either white mater or layer IV. To induce long-term potenti...
متن کاملEffect of Norepinephrine depletion on induction of experience dependent plasticity in male rat barrel cortex
Introduction: Barrel cortex of rats is a part of somatosensory cortex, which receives information from facial whiskers. Vibrisectomy by sensory deprivation leads to some changes in the barrel cortex, which have been known as experience dependent plasticity. On the other hand, Norepinephrine (NE) and locus coeruleus, which is the main source of NE, influenced response properties of cortical bar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Anesthesiology
دوره 111 2 شماره
صفحات -
تاریخ انتشار 2009